Armstrong Property Wetland and Stream Mitigation Project Hyde County, NC

2010 Annual Monitoring Report Year 3

NCEEP Project Number D06012-A Tar-Pamlico River Basin

Submitted to NCDENR/Ecosystem Enhancement Program 2728 Capital Blvd. Raleigh, NC 27604

Date: November, 2010

Monitoring: Albemarle Restorations, LLC P. O. Box 176 Fairfield, NC 27826

Table of Contents

Executive Sur	nmary	. 1
I. Project Back	kground	2
1.0	Project Objectives	2
2.0	Project Structure, Restoration Type and Approach	3
3.0	Location and Setting	3
4.0	Project History and Background	. 5
5.0	Monitoring Plan View	. 6
II. Project Con	ndition and Monitoring Results	. 9
1.0	Vegetation Assessment	9
1.1	Vegetation Discussion and Problem Areas	
1.2	Vegetation Monitoring Plan View (Integrated)	10
2.0	Wetland Assessment	10
2.1	Wetland Discussion and Problem Areas	10
2.15	Flow	11
2.2	Wetland Problem Areas Plan View (Integrated)	14
3.0	Project Success Discussion	.14
III. Methodolo	bgy Section	14

List of Tables

Table ES-1. Project Success Summary	
Table I. Project Restoration Components	
Table II. Project Activity and Reporting History	5
Table III. Project Contacts	
Table IV. Project Background	
Table V. Species for Each Community Type	
Table VI. Wetland Criteria Attainment by Community Type	14
Table C-1 Hydrologic Monitoring Results	

List of Figures

Figure 1. Composite Vicinity Map	. 4
Figure 2. Monitoring Plan View: Gauges and Vegetation Plots	. 7
Figure 3. Monitoring Plan View: Soils, Contours and Plant Communities	. 8
Figure F1. Water Level at Run Gauges Demonstrating Flow	13
Figure 4. Composite Vegetation and Wetland Problem Areas Plan ViewAppendix	

Appendices

Appendix A	Vegetation Data and Site Photos
Appendix B	Geomorphologic Raw Data – N/A
Appendix C	Hydrologic Data Tables
Appendix D	Integrated Problem Area Plan Views

Executive Summary

The Armstrong Property Wetland Mitigation Site is a headwater riverine wetland and stream mitigation project located just east of State Route 45 near its intersection with State Route 264, in Hyde County, North Carolina. It was constructed by Albemarle Restorations, LLC, under contract with EEP to provide compensatory wetland mitigation credits in the Tar-Pamlico River Basin. Construction activities, in accordance with the approved restoration plan, began October 1, 2007, and were completed on November 30, 2007. Tree and shrub planting on the project site occurred on January 28 and 29, 2008. An emergent wetland seed mixture was sown shortly afterward. With the exception of increased planting density, all planting was done in accordance with the approved restoration plan.

Five water level monitoring gauges are located at varying elevations throughout riverine wetland areas of the site to measure subsurface water elevations. Two additional gauges are located in the headwater stream (swamp run) to help monitor flow and water level within the stream. Two more gauges are installed at the reference site. Two of the five gauges in the riverine wetland area met the stated hydrologic success criterion of maintained groundwater levels within 12 inches of the soil surface for 21 consecutive days during the growing season (Four of the five gauges met success at 13 days - 5% of the growing season). The cumulative rainfall deficit during the 2010 growing season was 11.23 inches.

Corrective action to improve hydrologic performance was taken in September, 2010 in the form of subsoiling on 11 acres with the intent of improving water penetration and retention. It appears as if the treatment has had a positive effect by enhancing infiltration and groundwater recharge.

One flow event, resulting from a three-day period of rain in September and October was video documented during the 2010 growing season. The data from the water level monitoring gauges coincides with and confirms the flow of water through and off the site via the outlet pipe.

Four vegetative monitoring plots are installed in the riverine wetland areas and permanently monumented, one coincident with monitoring gauges 1 through 4. There are also two plots installed within the swamp run, each similarly situated and referenced at the two swamp run monitoring gauges. Each plot is a 10m X 10m square, as recommended by the CVS-EEP protocol for recording vegetation sampling. Three of the four plots in the riverine wetland area met the third year survival success criteria of 320 stems per acre. Both the plots in the swamp run met the same vegetation survival criteria.

Table ES-1 shows the levels of success attained by each of the water level monitoring gauges and the vegetation plots since monitoring began. Success criterion for hydrology is 8% of the growing season (21 days). Table C-1 in Appendix C has a detailed breakdown of hydrologic success. Success criterion for the vegetation plots is the third year level of survival (320 stems per acre).

	Table ES-1. Project Success Summary (longest hydro-period as a percent of the growing season)																
Gauge				Percent		V	egeta	ation	Plot		Percent						
	1	2	3	4	5	R1	R2	6*	7*	Success	1	2	3	4	R1	R2	Success
Year 1 (2008)	3.4	1.5	4.6	3.1	6.9	13.4	53.6	38.3	5.4	29%	Y	Y	Ν	Ν	Ν	Ν	33%
Year 2 (2009)	7.3	6.5	6.5	5	10.5	47.5	100	37.5	6.5	43%	Y	Y	Y	Y	Y	N	100%
Year 3 (2010)	5.4	3.4	5	11.5	19.5	18.8	35.2	37.9	10.7	57%	Y	Y	Y	Y	Y	Y	100%

Percentage of the growing season that gauge showed continuous hydrology. Green: met 8% level, Red: did not.

* Gauges 6 and 7 are reference gauges and are not included in the Percent Success

I. <u>Project Background</u>

1.0 <u>Project Objectives</u>

The goal of the Armstrong Property Mitigation Project was to create a riverine wetland system typically found in the middle to upper reaches of first or zero order tributary systems. The project is to serve as compensation for wetland loss in the Tar-Pamlico River Basin. The restoration plan was developed and implemented to eliminate pattern drainage and restore topography and hydrology that more closely resembled that of similar undisturbed land. Construction resulted in the development of a broad, frequently flooded swamp run following a historical path as evidenced by archived aerial photographs and signature topography. Subsequent planting was designed to restore a wetland forest ecosystem that is typically found in the immediate area characteristic of similar soils, topography and hydrology.

Ecological benefits of the restored riparian headwater system and its associated riverine wetlands are the following:

- 1. Water quality improvements, including nutrient, toxicant and sediment retention and reduction, increasing dissolved oxygen levels, as well as reducing excessive algae growth, and reducing surface water temperatures in receiving waters by providing permanent shading in the form of a shrub/scrub and forested headwater wetland system.
- 2. Wildlife habitat enhancement by adding to the existing adjacent forested areas creating a continuous travel corridor between habitat blocks and providing a wide range of habitat areas (open water, emergent, shrub/scrub and forested) for amphibians, reptiles, birds, insects and mammals.
- 3. Flood flow attenuation during storm events which reduces sedimentation and erosion downstream, and improves long term water quality within the Pungo River.
- 4. Passive outdoor recreation and educational opportunities for the landowner and the surrounding community.

2.0 <u>Project Structure, Restoration Type, and Approach</u>

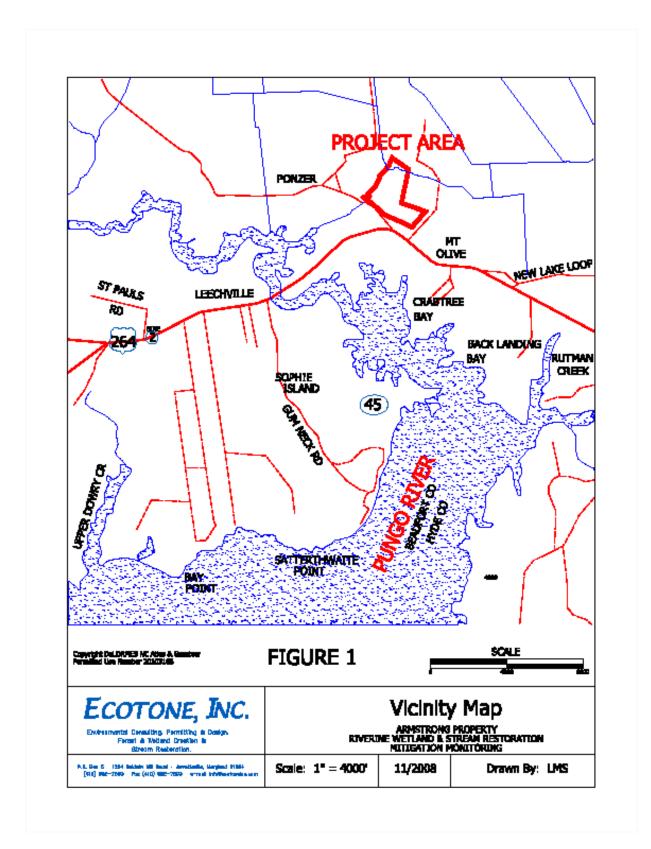

Table I lists the estimated wetland acreage to be restored on the Armstrong Property. The mitigation plan provides for the restoration of 20.0 acres of riverine wetlands and 2,200 linear feet of stream (swamp run) restoration. Prior to construction, the easement area was used entirely for row crop agriculture, primarily soy beans, corn and cotton. The agricultural fields were drained by several ditches that traversed the site with outfall into Clark Mill Creek. Construction activities, in accordance with the approved restoration plan, began in October, 2007 and were completed in November of 2007. Native tree and shrub species were planted in January of 2008. The resulting riverine system is designed to emulate natural swamp run systems found within the Pungo River Basin.

Table 1. Project Restoration Components						
Restoration Type	Pre-Existing Acres/Linear Feet	Post Construction Acres/ Linear Feet	Credit Ratio (Restoration : WMU)	Total WMUs/ SMUs		
Riverine Wetland	0.0 acres	20.0 acres	1:1	20.0 WMUs		
Stream (Swamp Run)	0.0 linear feet	2,200 linear feet	1:1	2,200 SMUs		

3.0 Location and Setting

The Armstrong Property Mitigation Site is located in Hyde County, between Ponzer and Mt. Olive on the north side of State Route 45 near its intersection with US Hwy 264. The easement area is situated in the middle of the Armstrong property and adds contiguous swamp run and forested wetlands to those of Clark Mill Creek, a tributary of the Pungo River which is less than a mile to the south. The surrounding area is primarily forest and agricultural land with residential properties as a minor component.

Figure 1 is a location map for the project site. Directions to the site are as follows: from Belhaven, travel east on US Hwy 264 approximately 10 miles and turn left (north) on State Route 45. Access to the site is approximately .25 miles north of the intersection on right.

Armstrong Property Wetland Mitigation Project Albemarle Restorations, LLC 2010 Monitoring - Year 3 of 5

4.0 **Project History and Background**

Table II provides the history of data collection and actual completion of various milestones of the Armstrong Property Wetland Mitigation Site.

Table II. Project Activity and Reporting History Armstrong Property Wetland Mitigation Project/EEP #D06012-A						
Activity or Report	Data Collection Complete	Actual Completion or Delivery				
Restoration Plan	June 2007	July 2007				
Final Design -90%	June 2007	July 2007				
Construction	N/A	November 2007				
Temporary S & E mix applied to entire project area	N/A	February 2008				
Permanent seed mix applied to entire project area	N/A	February 2008				
Containerized and Bare Root Planting	N/A	January 2008				
Mitigation Plan/As-built (Year 1 monitoring - baseline)	March 2008	December 2008				
Year 2 monitoring	September 2009	January 2010				
Year 3 monitoring	September 2010	November 2010				
Year 4 monitoring						
Year 5 monitoring						

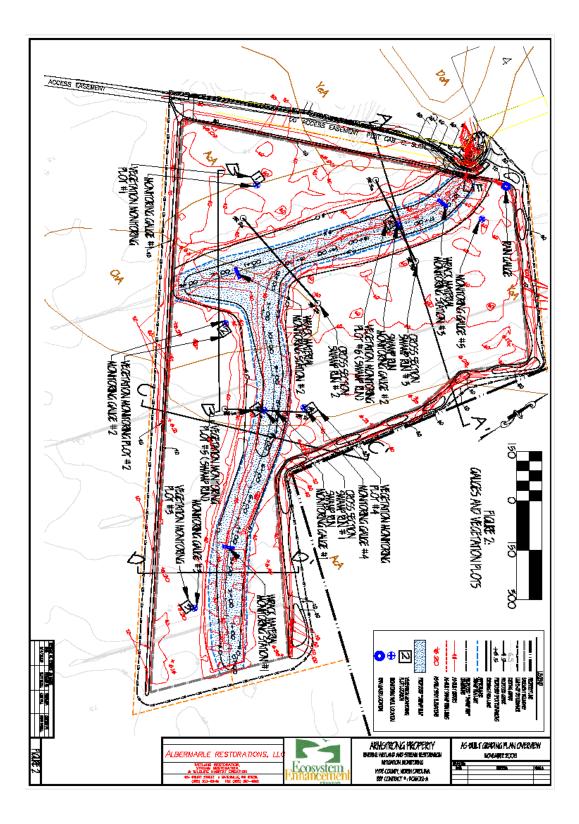
Points of contact for the various phases of the APWMS are provided in Table III.

	Table III. Project Contacts
Armstrong	Property Wetland Mitigation Site/EEP #D06012-A
Designer	Ecotone, Inc.
Primary Project design POC	1204 Baldwin Mill Road
	Jarrettsville, MD 21804
	Scott McGill (410-692-7500)
Construction Contractor	Armstrong, Inc.
Construction contractor POC	P. O. Box 96
	25852 US Hwy 64
	Pantego, NC 27860
	Tink Armstrong (252-943-2082)
Planting Contractor	Carolina Silvics, Inc.
Planting contractor POC	908 Indian Trail Road
	Edenton, NC 27932
	Mary-Margaret McKinney (252-482-8491)
Seeding Contractor	Armstrong, Inc.
Seed planting contractor POC	P. O. Box 96
	Pantego, NC 27860
	Tink Armstrong (252-943-2082)
Seed mix sources	Ernst Conservation Seeds, LLP, Meadville, PA
Nursery stock suppliers	International Paper, Inc., et. al.
Monitoring Consultants	Woods, Water and Wildlife, Inc.
Wetland and Vegetation POC	P. O. Box 176
-	Fairfield, NC 27826
	Ashby Brown (800-509-0190)

Armstrong Property Wetland Mitigation Project Albemarle Restorations, LLC 2010 Monitoring - Year 3 of 5 5

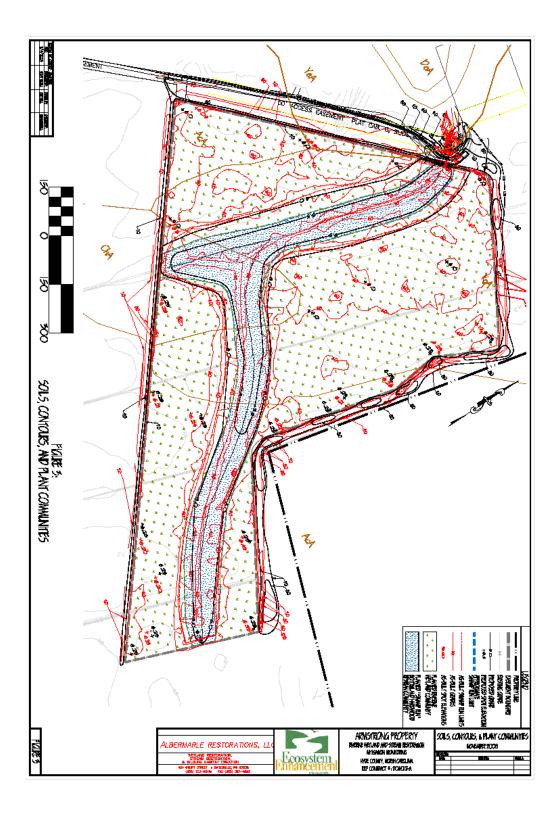
Project background information for the APWMS is provided in Table IV.

Table IV. Project Background Armstrong Property Wetland Mitigation Site/EEP #D06012-A					
Project County	Hyde County				
Drainage Area	25.0 acres within easement boundary				
Drainage impervious cover estimate (%)	0				
Physiographic Region	Coastal Plain				
Ecoregion	8.5.1 Middle Atlantic Coastal Plain				
Rosgen Classification of As-built	N/A				
Cowardin Classification	PEM, PSS, PFO				
Dominant Soil Types	Acredale Silt Loam				
Reference site ID	Clark Mill Creek, Hyde County, NC				
USGS HUC for Project and Reference	03020104				
NCDWQ Sub-basin for Project and Reference	03-03-07				
NCDWQ classification for Project and Reference	С				
Any portion of any project segment 303d listed?	No				
Any portion of any project segment upstream of a 303d listed segment?	Yes, Pungo River				
Reasons for 303d listing or stressor?	WWTP, ag, urban runoff, marinas				
% of project easement fenced	0				


5.0 <u>Monitoring Plan View</u>

There are five water level monitoring gauges installed in the riverine wetland areas of the site. These gauges are suspended in two-inch pvc pipe that is set approximately four feet vertically into the ground. The gauges have been located to assess the groundwater levels throughout the year at various elevations and topographies within the site. Two gauges are also installed in the swamp runs to help verify flow. Two more gauges are installed in an offsite wetland area to serve as references for a naturally functioning riverine wetland and headwater swamp run. In addition, there is a rain gauge onsite to capture and record precipitation.

Vegetation monitoring is accomplished by surveying the six permanent sampling plots. Each plot is referenced by a monitoring gauge which serves as the plot origin and as a photo station for that plot. The plots are ten meters square and are situated to give an accurate sample of the planted and natural woody vegetation. For each site, the data recorded matches that required of the *CVS-EEP Protocol for Recording Vegetation*, *v* 4.0, 2006, level 1-2.


Three wrack lines were also installed as an aid in monitoring flow in the swamp run. They were designed and located to capture debris during periods of high water as evidence of water movement within the site.

Figures 2 and 3 provide plan views of the site showing the location of all monitoring features including gauges, sampling plots and the rain gauge as well as the vegetative communities.

Armstrong Property Wetland Mitigation Project Albemarle Restorations, LLC 2010 Monitoring - Year 3 of 5

7

Armstrong Property Wetland Mitigation Project Albemarle Restorations, LLC 2010 Monitoring - Year 3 of 5 8

II. <u>Project Condition and Monitoring Results</u>

1.0 <u>Vegetation Assessment</u>

The vegetation success criterion was developed in accordance with the CVS-EEP protocol. The Armstrong project was designed to include both riverine and bottomland hardwood plant communities. The project was planted with a mixture of tree and shrub species that would resemble that of naturally occurring swamp runs and adjacent riverine wetlands in the local area. The run and area immediately adjacent were planted heavily with cypress, oaks and tupelo. The riverine wetland zone beyond the swamp run is populated by a broader mix of native hydrophytic tree and shrub species. The photos in Appendix A show the colonization of the project area by hydrophytic vegetation. The species mix was based on the vegetation noted at the reference site and all species are classified from FAC to OBL (Table V).

	Table V. Species by Community Type				
Armstrong	Armstrong Property Wetland Mitigation Project/EEP #D06012-A				
	Tree/Shrub Planting Schedule - 25.0	acres			
Common Name	Scientific Name	Wetland Indicator Status			
Bald Cypress	Taxodium distichum	OBL			
Water Tupelo	Nyssa aquatica	OBL			
Swamp Black Gum	Nyssa biflora	FAC			
Swamp Chestnut Oak	Quercus michauxii	FACW-			
Pin Oak	Quercus palustris	FACW			
Willow Oak	Quercus phellos	FACW-			
Swamp White Oak	Quercus bicolor	FACW+			
Water Oak	Quercus nigra	FAC			
Sweetgum	Liquidambar styraciflua	FAC+			
Swamp Cyrilla	Cyrilla racemiflora	FACW			
Sweet Pepperbush	Clethera alnifolia	FACW			
Virginia Sweetspire	Itea virginica	FACW+			
Button Bush	Cephalanthus occidentalis	OBL			
Wax Myrtle	Myrica cerifera	FAC+			
Highbush Blueberry	Vaccinium corymbosum	FACW			
Sweetbay	Magnolia virginiana	FACW+			
Swamp Bay	Persea palustris	FACW			

1.1 <u>Vegetation Discussion and Problem Areas</u>

Three of the four plots in the riverine community met the Year 3 success criterion of a minimum of 320 stems per acre after the third growing season. Plot 4 supported 289 stems per acre. Both stream plots met the success criterion due to the supplemental planting that was done in 2009. Over the entire project, the survival rate averaged 419 live stems per acre.

During the 2010 growing season, there was a cumulative rainfall deficit of 11.23 inches (according to the normal averages per the WETS table for Belhaven, NC). Also, as can be seen in site photos in Appendix A, the project area continues to have a complete and heavy ground

cover of herbaceous material. The soil in parts of the project was suspected to be moderately to severely compacted which, along with heavy herbaceous cover and droughty conditions during the peak of the growing season probably contributed to the mortality seen around Plot 4.

1.2 <u>Vegetation Monitoring Plan View (Integrated)</u>

See <u>Wetland Assessment</u> for discussion of the Monitoring Plan View.

2.0 Wetland Assessment

The hydrologic success criterion is to achieve a minimum of 21 consecutive days where the groundwater level is within 12 inches of the soil surface during the growing season. The growing season for this site is from March 11 to November 27, a period of 261 days (WETS Table for Belhaven, NC). Success for any particular monitoring location is to show soil saturation to within 12 inches of the surface for 21 consecutive days during that period.

There are five continuous water level monitoring gauges deployed across the site (Gauges 1 through 5) to monitor fluctuations in the water table and to determine if wetland hydrology is present. A rain gauge is also kept onsite and its data are compared to that collected at the NOAA cooperator site in Belhaven, NC. To further monitor the affect of seasonal and annual variations in precipitation in restored wetlands, hydrologic success of the site was assessed in relation to the reference wetland site where two more monitoring gauges are installed (Gauge 6 as a Swamp Run reference & Gauge 7 as a Riverine reference).

2.1 <u>Wetland Discussion and Problem Areas</u>

Through the end of June, 2010, the site experienced a cumulative rainfall deficit of 11.37" which no doubt contributed to poor hydrologic performance. Despite the lack of rainfall, and given the generally non-compliant hydrology at certain areas within the project, soil compaction was suspected to be a considerable component of the problem. The decision was made to subsoil approximately 11 acres to improve water penetration and retention. Figure 4 in Appendix D shows the three areas that were treated in September, 2010 and the photos in Appendix A show the effects.

A bulldozer with ripper shanks set approximately 30" apart and 24" deep did an excellent job of fracturing and lifting the clay layers. The heavy rainfall in late September helped resettle the soil. Replanting of the three areas will be done in November 2010 with species from the original planting schedule.

The hydrographs in Appendix C indicate potential improvements in the hydrology around gauges 1-4 which has been problematic. For the first time, gauge 4 was successful at 8% in the spring of 2010. Gauge 2 showed a hydroperiod of 9 days after the subsoiling which equaled its longest hydroperiod in the spring of 2010.

Further comparison of the hydrographs for gauges 1-4 to the one for Reference gauge 7 show that since the subsoiling was done, the hydrology at gauges 1-4 more closely tracks that at the reference site and even appears to be more responsive to minor rainfall events than at gauge 7. In addition, the hydrology at gauges 1-4 after subsoiling compared to the general hydrology during 2009, appears to be more sensitive to rainfall, indicating faster recharge rates. Most of these observations are based on a single, extended rainfall event, but gauges 1-4 now appear to be behaving more in line with the reference gauge 7. Given the droughty conditions during the past three growing seasons, mirroring the reference site may be best indication of developing wetland hydrology.

Both of the swamp run gauges, R1 and R2, met hydrology success. The hydrologic patterns they recorded closely correlate to that of Reference Gauge 6, which is in a similar landscape position. Comparison of the hydrographs for gauges R1, R2 and Reference 6 indicate that these three gauges are measuring very similar patterns for both above and below ground water levels which is further proof that the site is behaving like a naturally functioning headwater system.

2.15 <u>Flow</u>

The rainfall deficit in 2010 allowed for only one verifiable flow event during the growing season. Video files included with this report corroborate the data shown in the following figure that is discussed below.

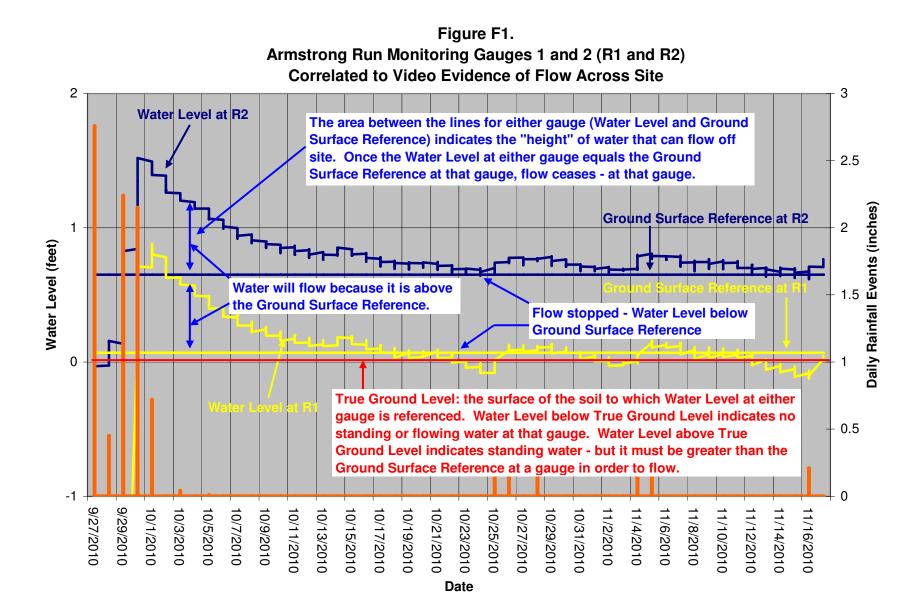

Refer to Figure F1 for the following discussion of evidence of flow within the swamp runs. Figure F1 is a composite chart showing the water level at both run gauges during a period when flow in the swamp runs was visually confirmed and recorded on video. From 9/28/2010 through 10/1/2010 the site received 8.32" of rain causing the water levels to rise rapidly and gradually drain through and off the site. The ground level at gauge R1 is .07 feet above the inlet level of the outfall pipe at the downstream end of the project. The ground level at gauge R2 is .65 feet *below* the inlet level of the pipe. Gauge R2 is situated in a depression which means the area immediately surrounding gauge R2 will never completely drain offsite. These relative ground surface levels are indicated in Figure 1 as Ground Surface References.

Figure F1 illustrates the "height" of water at gauges R1 and R2 that can flow offsite. Gauge R2 is shown in blue. The difference between the Water Level at R2 and the Ground Surface Reference at R2 at any point between those lines represents the level of water that can flow offsite. Once the Water Level falls to or below the Ground Surface Reference, flow can no longer occur because it will have reached equilibrium with the level of the outlet pipe, even though the water level may still be above the True Ground Level (shown in red). The same is not quite true for gauge R1. Its Ground Surface Reference is .07 feet above the outlet pipe, but flow at this gauge can continue until the water level falls to the True Ground Level because it will be collected in the area around gauge R2.

The video documentation included with this report is from the remnants of a tropical storm at the end of September, 2010. Water level measurements over a three-day period after the rain event ended not only confirm the flow pattern described above but also illustrate how the site is capturing run-off from the field above as water levels in the project continued to rise for a day

11

after rain had ended. The water level at gauge R1 eventually dropped as water flowed through the site, but for two days after the rain ended, the level at gauge R2 increased as the water from the fields above the project drained into the site.

Armstrong Property Wetland Mitigation Project Albemarle Restorations, LLC 2010 Monitoring - Year 3 of 5

13

2.2 <u>Wetland Monitoring Plan View (Integrated)</u>

Figure 4 in Appendix D provides an overview of the areas where hydrology was deemed poor enough to warrant corrective action. Much of the riverine wetland zone was flooded for a short length of time early and late in the growing season as evidenced by the site photos in Appendix A. For most of the summer however, the site suffered droughty conditions due to continued below-average rainfall.

	Table VI. Hydrology and Vegetation Criteria Success by PlotArmstrong Property Wetland Mitigation Project/EEP #D06012-A							
Gauge	Hydrology Success Met	Hydrology Mean	Vegetation Plot	Vegetation Success Met	Vegetation Mean			
1	Ν		1	Y				
2	Ν		2	Y				
3	Ν		3	Y				
4	Y	57%	4	Ν	83%			
5	Y		No Plot	No Plot				
R-1	Y		R-1	Y				
R-2	Y	1	R-1	Y				
6 (Ref)*	Y	1	No Plot	No Plot				
7 (Ref)*	Y	1	No Plot	No Plot				

* Gauges 6 & 7 are reference gauges on the reference site and are not included in the success percentages

3.0 Project Success Discussion

Particularly droughty conditions persisted in 2010, so in order to remove all impediments to success, severe and highly invasive corrective action was taken in the form of improvements to the soil structure. The subsoiling that was done in September, 2010 appears to have had a positive effect on the hydrology. However, as indicated by Reference gauge 7, without a more normal rainfall pattern during the growing season, successful hydrology may only be possible during the cooler months when rainfall is more consistent.

Unfortunately, where it was done, subsoiling damaged much of the tree stock; replanting is scheduled to be done in November, 2010.

III. <u>Methodology Section</u>

Year 3 monitoring for the Armstrong project occurred in 2010. Monitoring and vegetation sampling procedures were established in the mitigation plan for this project and no deviations were made.

Appendix A

Vegetation Data Tables

Site Photos

1. Vegetation Data Tables

Report Prepared By	Ashby B. Brown					
Date Prepared	9/23/2010 16:40					
•						
DESCRIPTION OF WOR	RKSHEETS IN THIS DOCUMENT					
Vigor by Spp	Frequency distribution of vigor classes listed by species.					
Damage by Spp	Damage values tallied by type for each species.					
Damage by Plot	Damage values tallied by type for each plot.					
ALL Stems by Plot and						
spp	missing stems are excluded.					
PROJECT SUMMARY						
Project Code	D06012A					
project Name	Armstrong Wetland Mitigation project					
River Basin	Tar-Pamlico					
Sampled Plots	6					

Table 1. Vegetation Metadata

	Species	4	3	2	1	0	Missing	Unknown
	Cephalanthus occidentalis	5	2	1			1	
	Itea virginica			1				
	Liquidambar styraciflua	2	2					
	Nyssa biflora			1				
	Quercus bicolor		2	3			2	
	Quercus phellos	1	7	7			2	
	Taxodium distichum	11	7		1			
	Myrica cerifera	8				1	2	
TOT:	8	27	20	13	1	1	7	

Table 2. Vigor by Species

Table 3. Damage by Species

	Species	All Damage Categories	(no damage)
	Cephalanthus occidentalis	9	9
	Itea virginica	1	1
	Liquidambar styraciflua	4	4
	Myrica cerifera	11	11
	Nyssa biflora	1	1
	Quercus bicolor	7	7
	Quercus phellos	17	17
	Taxodium distichum	19	19
TOT:	8	69	69

Table 4. Damage by Plot

	plot	All Damage Categories	(no damage)
	D06012A-ABET-0001-year:1	12	12
	D06012A-ABET-0002-year:1	14	14
	D06012A-ABET-0003-year:1	13	13
	D06012A-ABET-0004-year:1	9	9
	D06012A-ABET-R1-year:1	9	9
	D06012A-ABET-R2-year:1	12	12
TOT:	6	69	69

			plot D06012A-ABET-							
	Species	Total Planted Stems	# plots	avg# stems	1	2	3	4	R1	R2
	Cephalanthus occidentalis	8	2	4					3	5
	Itea virginica	1	1	1				1		
	Liquidambar styraciflua	4	1	4		4				
	Myrica cerifera	8	5	1.6	2	1	2	2	1	
	Nyssa biflora	1	1	1				1		
	Quercus bicolor	5	3	1.67		3	1		1	
	Quercus phellos	15	4	3.75	3	3	6	3		
	Taxodium distichum	19	4	4.75	5	3			4	7
TOT:	8	61	8		10	14	9	7	9	12
A	Average stems per acre				412	577	371	289	371	495
Proj	ect average stems per acre	419								

Table 5. Stem count by plot and species

 Table 6. Vegetation Problem Areas

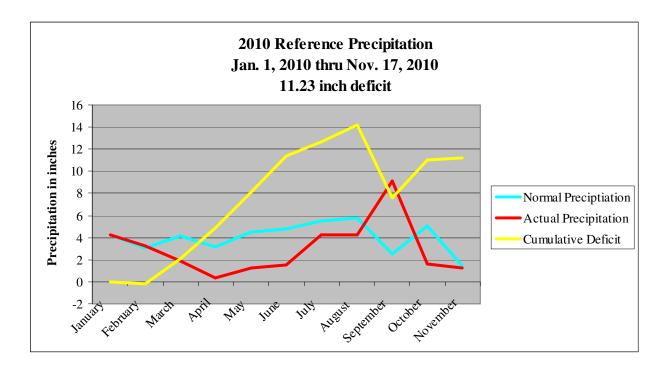
Feature/Issue	Plot	Probable Cause	Photo #
Slow growth and development	Swamp run plots: heavy cattails, plots 1 and 3 herb. cover	Dense herbaceous cover droughty conditions	VPA 1, 2
Remedial action to soil structure	1, 2 and 4	Compacted Soil, corrected by subsoiling	3-5

VPA 1 Continued heavy cattail cover in swamp run

VPA 2 Continued heavy cattail coverage in swamp run

(Photo 3) Dry reference area in April 2010

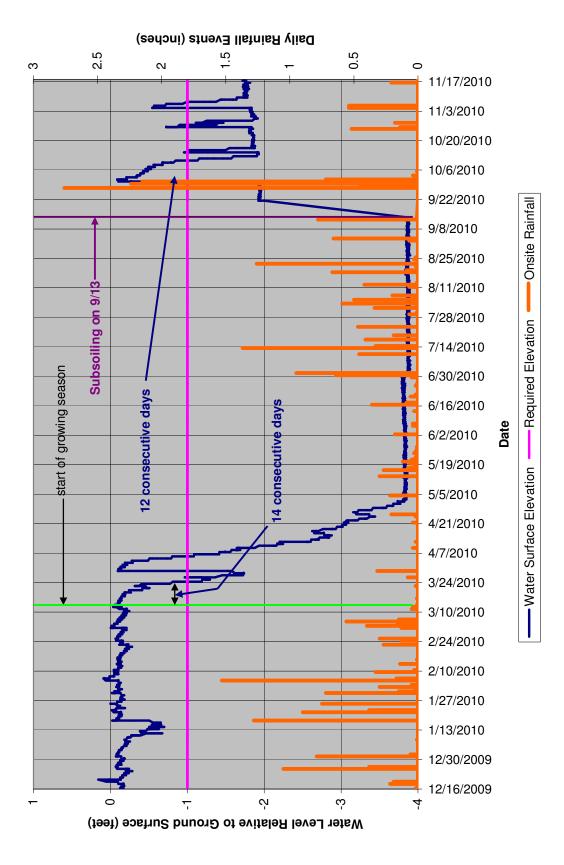
(Photo 4) Effects of subsoiling near gauge 2 in September 2010



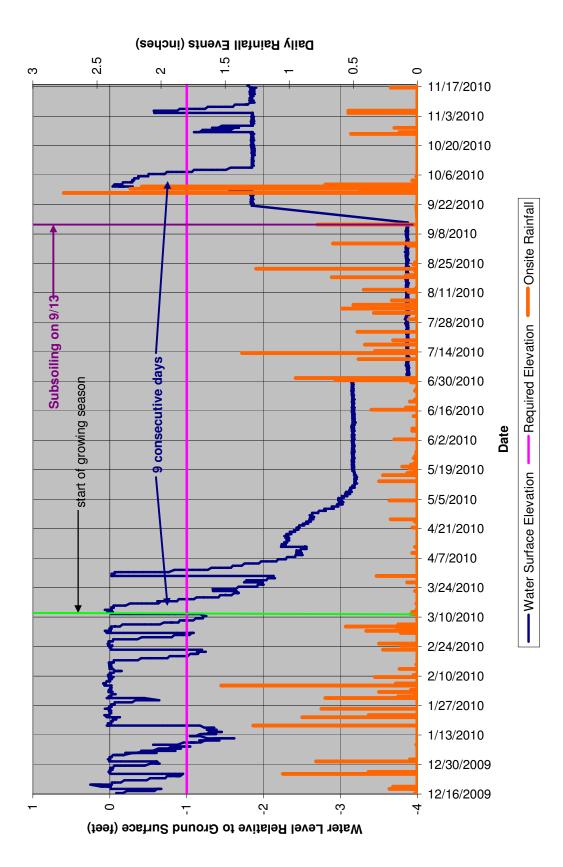
(Photo 5) Clay fracturing after subsoiling in Sept. 2010

	Table C-1															
Longest Consecutive Successful Hydrologic Period																
in Days and Success at 5% and 8% of Growing Season																
	Year 1				ear 2		Curr	ent Ye	ear	Ŋ	Year 4			Year 5		
Gauge	Days	5%	8%	Days	5%	8%	Days	5%	8%	Days	5%	8%	Days	5%	8%	
1	9	Ν	Ν	19	Y	Ν	14	Y	Ν							
2	4	Ν	Ν	17	Y	Ν	9	Ν	Ν		1					
3	12	Ν	Ν	17	Y	Ν	13	Y	Ν		1 1 1					
4	8	Ν	Ν	13	Y	Ν	30	Y	Y							
5	18	Y	Ν	27	Y	Y	51	Y	Y							
6 (Ref)	100	Y	Y	98	Y	Y	99	Y	Y						i i i	
7 (Ref)	14	Ν	Ν	17	Y	Ν	28	Y	Y						1 1 1	
Run 1	35	Y	Y	124	Y	Y	49	Y	Y							
Run 2	140	Y	Y	261	Y	Y	92	Y	Y						1 1 1	

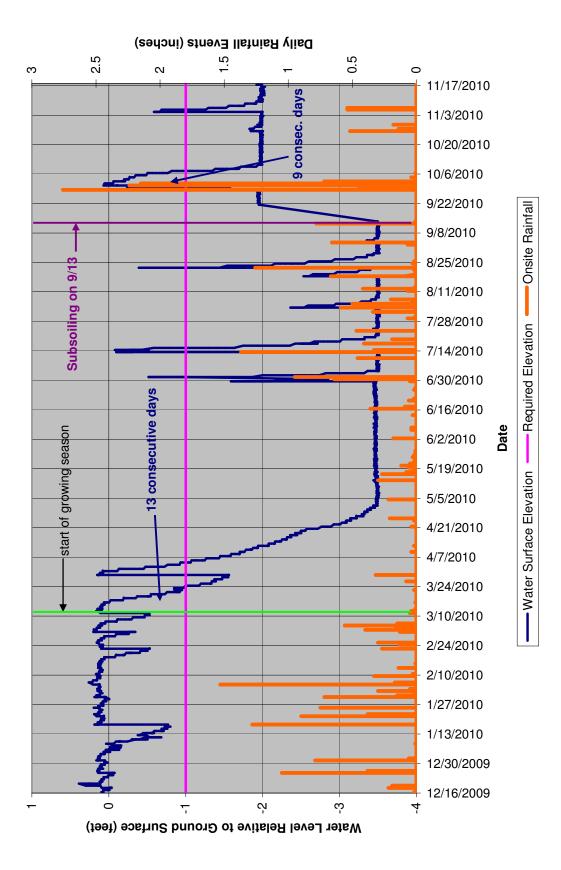
^{5%} of growing season is 13 days, 8% is 21 days

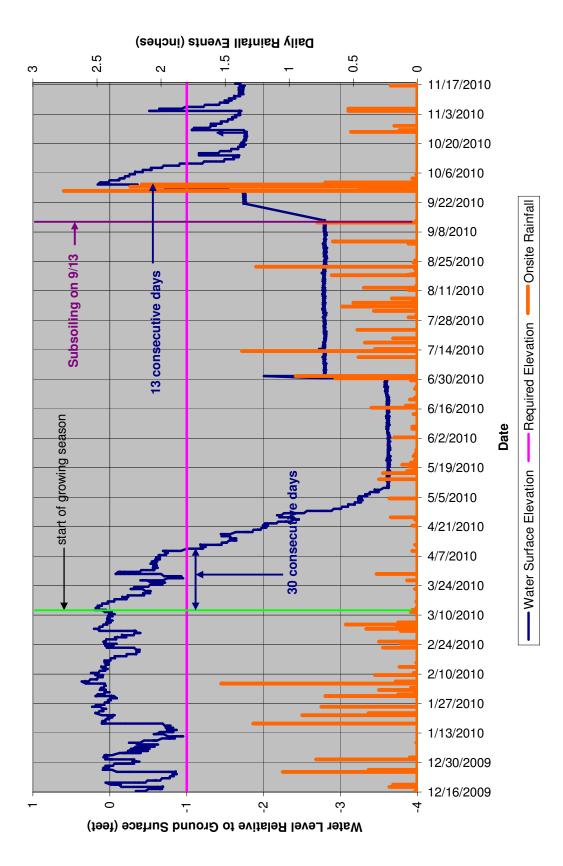

Appendix B

Geomorphologic Raw Data

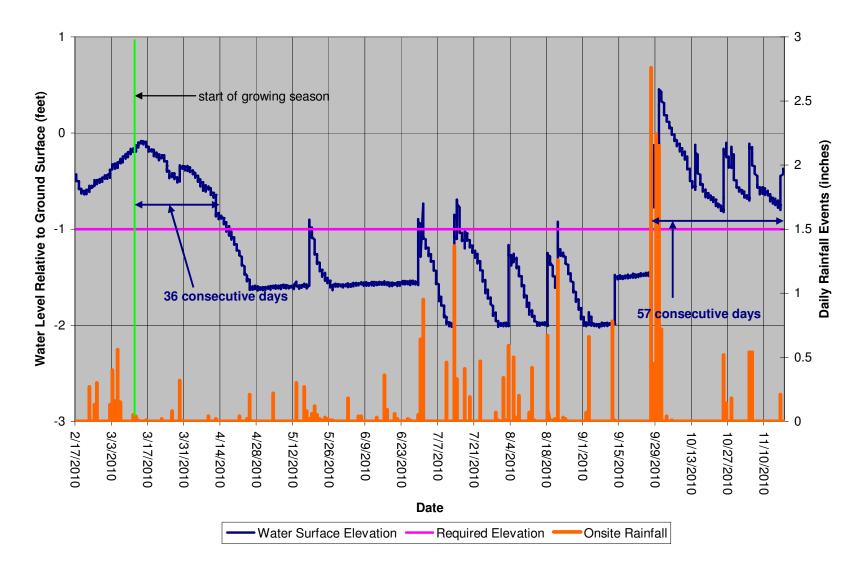

Not used in this report

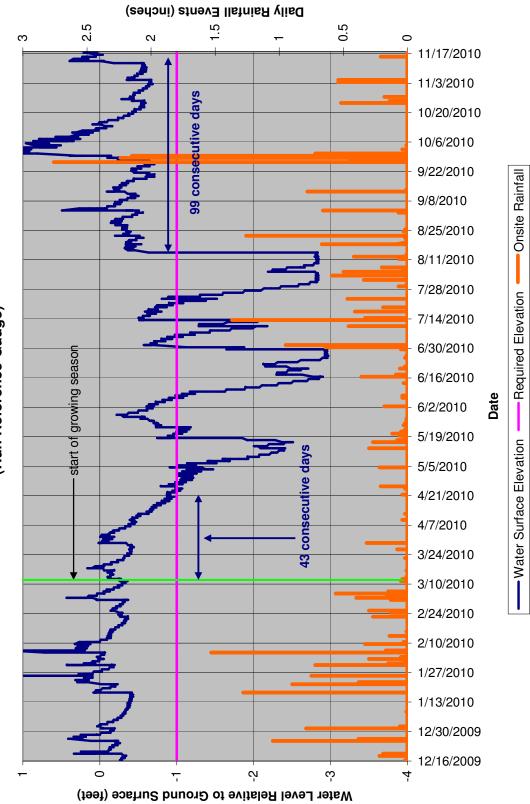
Appendix C

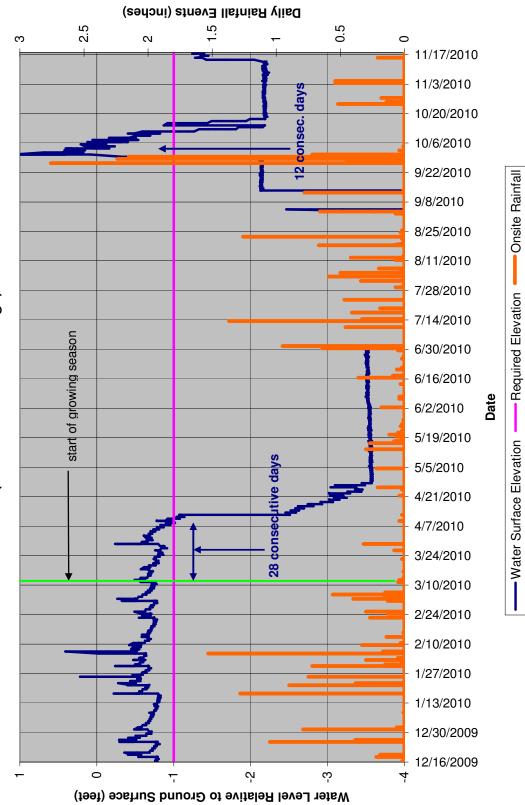

Hydrologic Data Tables



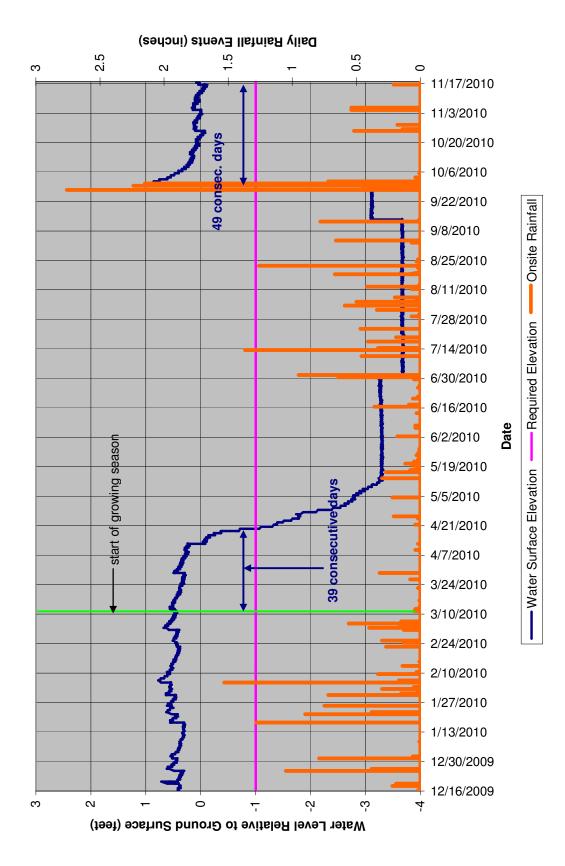
Armstrong Monitoring Gauge #2 (1272306)

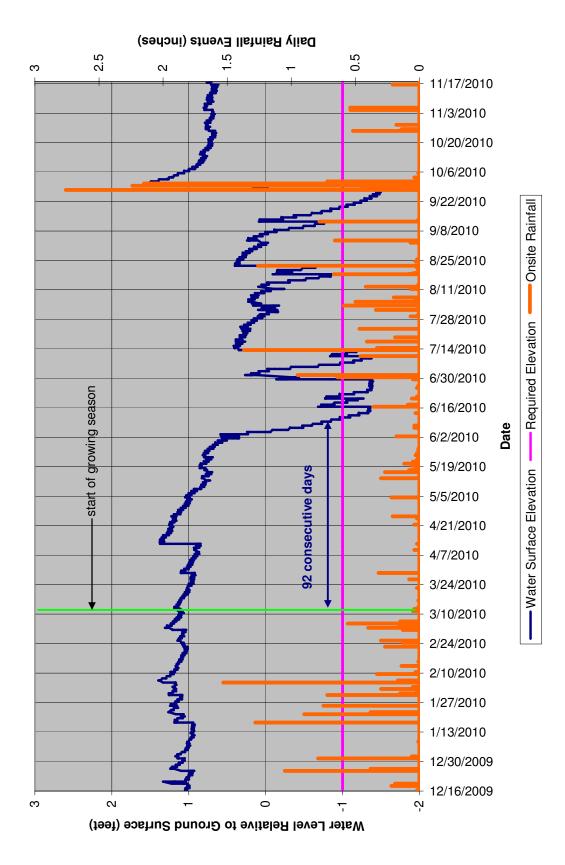



Armstrong Monitoring Gauge #3 (1272305)

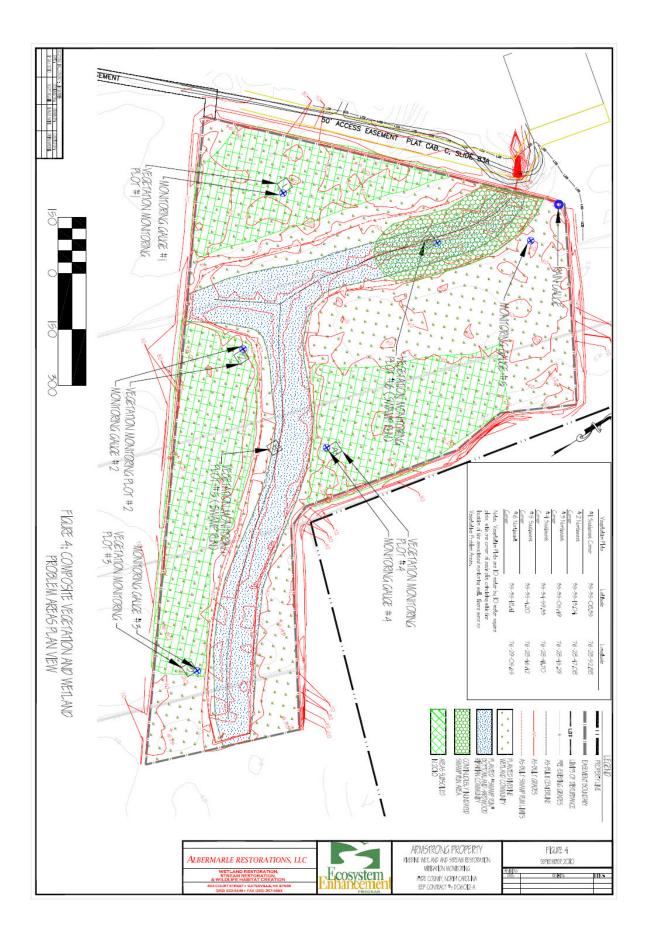

Armstrong Monitoring Gauge #4 (1272310)

Armstrong Monitoring Gauge #5 (1272311)




Armstrong Monitoring Gauge #6 (1272309) (Run Reference Gauge)

Armstrong Monitoring Gauge #7 (1272312) (Riverine Reference Gauge)


Armstrong Run Monitoring Gauge #1 (1272317)

Armstrong Run Monitoring Gauge #2 (1272318)

Appendix D

Problem Areas Plan View (Integrated)

